
48 The Delphi Magazine Issue 65

Under Construction: Wireless
Application Protocol, Part 2
by Bob Swart

Last month I introduced WAP
(Wireless Application Proto-

col) and WML (the Wireless
Markup Language) to you, and we
saw how we could write dynamic
WAP applications using Delphi. We
also noticed a number of limita-
tions of WML, and discovered that
not all of the WebBroker compo-
nents produce WML-compatible
output.

This time we will cover WML
images (in the WBMP format),
showing how we can produce
dynamic images on your WAP
phone. We’ll also be building
a WML-compatible DataSetTable-
Producer WebBroker component.

WAP Gateway
First, however, I want to start with
some important information about
deploying WAP applications and
WML pages that wasn’t covered
last time.

Those of you who already tried
the examples from last month may
have experienced some difficulties
with your web server. This is
caused by the fact that the special
mime types for WML (and WBMP)
are not known by normal web serv-
ers. You first need to register these
mime types at your web server,
otherwise WML files and WBMP
images will not be handled cor-
rectly (and this is also the reason
why not all web servers are able to
correctly serve WAP applications).

Using Microsoft Internet Infor-
mation Server (IIS) version 4, you
need to go to the Internet Service
Manager dialog, and click on the
Properties button for the (Default)
Web Site. In this dialog, you need to
go to the HTTP Headers tab and click
on the File Types button in the
lower right corner. In the new
pop-up dialog, you can enter addi-
tional mime types that your web
server should support. For WAP
applications, you need to enter two

new mime types: first, the associ-
ated extension .wml, which
should point to content type
text/vnd.wap.wml, and second the
associated extension .wbmp which
should point to content type
image/vnd.wap.wbmp. Your web
server will now function as a WAP
application server.

The mirror of my website (at
www.drbob42.co.uk) is hosted by
TDMWeb, which has the above
mime types registered, so I can use
this mirror website as a test envi-
ronment for my WAP applications.
I have uploaded some examples to
this website.

WAP Images
As a first example, I want to show
you how to return (or produce)
images inside WAP applications. In
normal web applications, these
can be of type GIF, JPG (or JPEG) or
PNG, but WAP applications can
only use WBMP files. WBMP stands
for Wireless Bitmap and is a new
image format. WBMP files which
are currently supported (type 0)
are two colour (black and white)
and use no compression. More
colours can be added later, when
WAP phones get more capabilities,
and compression is also an option
that might be possible for future
types of WBMP. But remember
that the current generation of WAP
phones has little processing power
to decompress the image, so it may
take a little while for a new WBMP
format to emerge.

Because only the latest graphi-
cal design tools will support

WBMP, the easiest way I found to
use WBMP files is to first generate
a two-colour file in GIF, JPEG or
BMP format using something like
PaintShop Pro (or Resource Work-
shop), and then use a converter to
generate a WBMP file. If you don’t
have or know how to find such a
converter, you can use a free
online version on the web at
www.teraflops.com/wbmp which
can load a GIF, JPG or BMP file from
your disk and convert it into
WBMP, ready to be used inside a
WAP application.

The WML that you must use for
WBMP files has the following
syntax (for a static image):

<img src="http://domain.com/
logo.wbmp" alt="logo"/>

Alternatively, and more interest-
ingly, there’s a way to produce
dynamic WBMP. First, you need a
slightly modified WML statement:

<img src=
"http://domain.com/cgi-bin/
tdm65.exe/image" alt="logo"/>

And then you need to add a
WebActionItem with PathInfo set to
/image, so it can be called to pro-
duce a dynamic WBMP image. This
is done in the Listing 1 code snip-
pet (note that the web server must
be able to return files of the speci-
fied mime type, as I’ve outlined
above).

procedure TWebModule1.WebModule1WebActionItem3Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
ImageStream: TFileStream;

begin
ImageStream := TFileStream.Create('d:\www\logo.wbmp', fmOpenRead);
ImageStream.Position := 0; // reset ImageStream
Response.ContentType := 'image/vnd.wap.wbmp';
Response.ContentStream := ImageStream;
Response.SendResponse;

end;

➤ Listing 1: Returning dynamic
WBMP image.

January 2001 The Delphi Magazine 49

Note that we don’t need to free
the ImageStream in the above list-
ing, since the Response.Content-
Stream will now own the actual file
and will free it when the Response
object is destroyed. The result of
producing the dynamic WBMP
image can be seen in Figure 1.

In practice you may want to grab
this image from a database, or
some other location, but at least
this example has shown how you
can produce the ‘second’ WAP-
related mime type using
WebBroker.

TWMLDataSetTableProducer
Last time, we noticed that the
PageProducers were compatible
with WML and could be used in
WAP applications. We also saw,
however, that the TableProducers
produced HTML that was not com-
patible with WML. The differences
were twofold: some HTML tags
were produced in upper case
(while WML demands lower case),
and some attributes were used
(like bgcolor and border) that were
unknown by WML. As a third differ-
ence, I noted that the columns prop-
erty was not used in the
DataSetTableProducer, but is a
required attribute in WML.

In short, there are several things
we need to override in the original

version of TDataSetTableProducer,
so start with File | New and select
New Component to start the dialog for
which you need to specify the
TDataSetTableProducer as parent
(ancestor type) and the class name
TWMLDataSetTableProducer. I have
used the DrBob42 palette page, but
you may prefer to put it on the
Internet tab instead.

The original TDataSetTable-
Producer component can be found
in the dbweb.pas unit (for those of
you who have the VCL source
code). It consists of a number of
methods that produce uppercase
HTML tags, such as Content,
TableCaption and TableHeader. The
Content method is the one that
actually produces the WML (previ-
ously HTML) output. It calls an
important function to do the actual
work, called HTMLTable inside
dbweb.pas. In our case, I’ve rewrit-
ten this function and called it
WMLTable (to make absolutely clear
that it generates WML instead of
HTML). The new WMLTable function
calls supporting methods from
the new TWMLDataSetTableProducer,
such as TableHeader and Format-
Cell. Originally, the HTMLTable func-
tion also called TableCaption, but
since that has no use in WML, I’ve
decided not to call that method, so
we don’t even have to override it in
the new TWMLDataSetTableProducer
class, leaving only Content and
TableHeader. Like I said a few lines
ago, the Content requires only a

minor change, namely a call to
WMLTable instead of HTMLTable. The
TableHeader method is completely
rewritten (see Listing 2), since it
must return a lowercase <table>
tag, and should only include the
‘columns’ attribute (and not pro-
duce the other attributes that used
to be generated by the TableHeader
method of the parent class). A
third method called FormatCellhas
been designed with tag case-
sensitivity in mind, since the
actual tag (TD in the old case, td in
our case) is passed as argument,
so we only need to change the call
to FormatCell from within the
WMLTable method to ensure
WML-compatible output is gener-
ated. The final method, called
TableCaption, is something that is
not used in WML, so instead of
overriding it (and returning
nothing), we can just make sure
not to call it.

➤ Figure 1: WAP with WBMP
image.

➤ Figure 2: New
TWMLDataSeTTableProducer
Component Dialog.

50 The Delphi Magazine Issue 65

This results in two overridden
methods (TableHeader and Content)
in the TWMLDataSetTableProducer
component, and one new function
(WMLTable). A final new function
called EnCode is needed because
WML is more sensitive to the use of
special characters such as quotes,
apostrophes, ampersands, less
than characters, greater than char-
acters and soft hyphens. We need
to replace these with the WML
codes, or character entities
(respectively with " '
& < > ­ and).
This ensures that the generated
field values are still compatible
with WML and will not produce
error messages (a lonely & will
surely do otherwise).

After installation, you’ll find the
new TWMLDataSetTableProducer on
your component palette, ready to
be used in WebBroker WAP appli-
cations (note that the output is
now of less use in ‘traditional’
HTML web applications, although
web browsers tend to be more
forgiving than WAP phones).

A nice side effect of the Property
Editor for the Columns property of
the TWMLDataSetTableProducer is
that it has a preview page that
shows how the output will look. At
that point, the Object Inspector
shows a number of properties that
are useful when generating HTML
output (like bgcolor, border, etc)
which are not used by TWMLData-
SetTableProducer. And since the
Property Editor still uses a real call
to the underlying TWMLDataSet-
TableProducer.Content method to
preview the output, you will

immediately see that setting these
properties at design-time has no
effect on the output. So even if you
see the output in an HTML browser
(preview) and not in a WAP phone,
it still shows only the effects for
the properties that are indeed
supported by WML.

Of course, in time one could
even enhance the Property Editor
for the TWMLDataSetTableProducer
to use a WAP phone simulation as
the preview window, but that’s
something for another day.

Final Demonstration
As a final demonstration, let’s
write a WebBroker application
that uses a TWMLDataSet-
TableProducer to produce a WML
table as well as a dynamic WBMP
image. We need to WebItemActions;
one default action to produce
the initial WML and to include

unit twmlprod;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, HTTPApp, DB, DBWeb;

type
TWMLDataSetTableProducer = class(TDataSetTableProducer)
public
function TableHeader: string; override;
function Content: string; override;

end;
procedure Register;
implementation
const
StartRow = '<tr>';
EndRow = '</tr>';

function EnCode(Str: String): String;
{ Convert memo contents to single line XML }
var
i: Integer;

begin
for i:=Length(Str) downto 1 do begin
case Str[i] of
'"': begin

Insert('"',Str,i+1);
Delete(Str,i,1)

end;
'''': begin

Insert(''',Str,i+1);
Delete(Str,i,1)

end;
'&': begin

Insert('&',Str,i+1);
Delete(Str,i,1)

end;
'<': begin

Insert('<',Str,i+1);
Delete(Str,i,1)

end;
'>': begin

Insert('>',Str,i+1);
Delete(Str,i,1)

end;
'-': begin

Insert('­',Str,i+1);
Delete(Str,i,1)

end;
else
if (Ord(Str[i]) in [1..31]) then begin
Insert('&#'+IntToStr(Ord(Str[i]))+';',Str,i+1);
Delete(Str,i,1)

end else
if Str[i] = #0 then Delete(Str,i,1)

end
end;
Result := Str

end {EnCode};
function WMLTable(DataSet: TDataSet; DataSetHandler:
TWMLDataSetTableProducer; MaxRows: Integer): string;

var
I, J: Integer;
DisplayText: string;
Field: TField;
Column: THTMLTableColumn;

begin
Result := DataSetHandler.TableHeader + #13#10;
if DataSet.State = dsBrowse then begin
J := 1;
while (MaxRows <> 0) and not DataSet.EOF do begin
Result := Result + StartRow;
for I := 0 to DataSetHandler.Columns.Count-1 do begin
Column := DataSetHandler.Columns[I];
Field := Column.Field;
if Field <> nil then
DisplayText := EnCode(Field.DisplayText)

else
DisplayText := '';

with Column do
Result := Result + DataSetHandler.FormatCell(J, I,
DisplayText, ‘td', '', Align, VAlign, '');

end;
Result := Result + EndRow + #13#10;
DataSet.Next;
Dec(MaxRows);
Inc(J);

end;
end;
Result := Result + '</table>';

end;
function TWMLDataSetTableProducer.Content: string;
begin
Result := '';
if DataSet <> nil then begin
if DataSet.Active and (Columns.Count = 0) then
LayoutChanged;

if DoCreateContent then
Result := Header.Text + WMLTable(DataSet, Self,
MaxRows) + Footer.Text;

end;
end;
function TWMLDataSetTableProducer.TableHeader: string;
begin
Result := '<table';
with TableAttributes do begin
if Width > 0 then
Result := Format('%s columns="%d"',
[Result, Columns.Count]);

if Custom <> '' then
Result := Format('%s %s', [Result, Custom]);

end;
Result := Result + '>';

end;
procedure Register;
begin
RegisterComponents('DrBob42', [TWMLDataSetTableProducer]);

end;
end.

➤ Listing 2:
TWMLDataSetTableProducer
component.

52 The Delphi Magazine Issue 65

the TWMLDataSetTableProducer’s
Content output, and a /image action
item to produce the dynamic
image (as we saw in Listing 1).

First, drop a TTable component
on your web module, and make it
point to something (like the Cus-
tomer.db table from DBDEMOS). Now,
before you continue, it’s important
to remember that a WAP phone has
only a small display, so you don’t
want to show more than a few
fields. In my example, I even limit
myself to one field (the company
name), and I urge you to experi-
ment with WML tables before using
them in a real-world WAP applica-
tion. Anyway, once your table
points to a dataset, you can drop

on a TWMLDataSetTableProducer
component, point its DataSet prop-
erty to the table and click on the
ellipsis (...) next to the Columns
property to visually ‘design’ your
output.

Finally, since we’ve already seen
the code for the /image OnAction
item, we only need to focus on the
initial OnAction event handler,
which can be coded as shown in
Listing 3.

As you can see, the call to
tdm65.exe/image is used to dynami-
cally produce a WBMP image,
which is followed by the WML table
as produced by WMLDataSetTable-
Producer1.Content. The output can
be seen in Figures 3 and 4.

Next Time
It’s been a while since I’ve covered
CORBA or the VisiBroker for
Delphi add-in tool in these pages.

And by the time
you read this
column, a new
version of
VisiBroker 3.3 for
Delphi 5 should
be available from
Borland (most
probably as a
paid-for add-in
tool for Delphi 5
Enterprise). Next
time in Under
Construction we
will see how this
new VisiBroker
for Delphi has
matured, and
what the new
IDL-2-PAS can
produce for us.
Support for
CORBA excep-
tions may no

procedure TWebModule1.WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.ContentType := 'text/vnd.wap.wml';
Response.Content := '<?xml version="1.0"?>'#13#10 +
'<!DOCTYPE wml PUBLIC ' +
'"-//WAPFORUM//DTD WML 1.1//EN" '+
'"http:///www.wapforum.org/DTD/wml_1.1.xml">'#13#10#13#10 +
'<wml>'#13#10 +
'<card id="DrBob42" title="DrBob42">'#13#10 +
'<p>'#13#10 +
'' +
'</p>'#13#10'<p>' +
WMLDataSetTableProducer1.Content + #13#10 +
'</p>'#13#10 +
'</card>'#13#10 +
'</wml>';

end;

➤ Listing 3: Final WML/WBMP
Example.

longer be limited to client-side
only, and we’ll be working with
true server skeletons and client
stubs. Finally, CORBA the way it
was meant to be with Delphi! All
this and more next month, so stay
tuned...

Acknowledgements
I want to thank my Everest DOC
colleague Arnim Mulder for his
welcome assistance and sugges-
tions while playing with WAP,
WML and WBMPs.

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an @-
consultant for Everest and also
co-founder of the Delphi
OplossingsCentrum. Bob is a
freelance technical author and a
frequent speaker at Delphi-
related events all over the world.

➤ Figure 3

➤ Figure 4

	WAP Gateway
	WAP Images
	TWMLDataSetTableProducer
	Final Demonstration
	Next Time
	Acknowledgements

